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ABSTRACT

One of the most serious deterrants to the development of multiple processor

architectures has been the problem of providing adequate communication between the

discrete processing elements. This paper examines two communications-based

constraints.

The first constraint is related to the physical structure of the VLSI chip. The

wider the communication path the more pins are needed to effect the data transfer. As

Integrated Circuits grow in computational power, more communication capacity is

needed, pushing designs closer to the pin limitations of the packaging technology.

The second constraint, somewhat related to the first, is the limited speed with

which data can be transmitted via internal channels. Typical speeds one can achieve

on a single wire are on the order of 1 Gbps. The recent development of an

Optoelectronic Multiplexer may allow VLSI chips to communicate at rates up to 7

Gbps. An architecture for a parallel processing computer which takes advantage of

this new capability is presented. The feasibility of a single-chip parallel-processor

based on the Optoelectronic Multiplexer is examined by projecting current trends in

processor speed, power, and transistor count into estimates of throughput for a

multi-processor IC.
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I. INTRODUCTION

Farmers once, used oxen to plow their fields. And when the task got too big for
one ox they did not try to grow a bigger ox. They got two of them: [Ref. 1]

A. THE NEED FOR PARALLEL PROCESSING

So too have we often found that one computer is not enough, or at least, not fast

enough for many applications. While progress on producing faster single processor

computers continues, it is the orders of magnitude leap in speed possible in

multiple-processor computers that promises to lead computing into its Fifth

Generation.

[Multiple-processor computers became] necessarv because a limit to higher speed
had been reached with brute-force approaches employing faster switching devices.
Faster components made with eallium arsenide or Josephson junction devices can
increase computer speed onlv 10 times if current uniprocessor architectures are
used; however with the new a'rchitecturcs, there is hope of increasing speed 100 to
1000 times. [Ref. 2]

Such dramatic increases in computer speed would be of great benefit to

researchers working on computationally-intensive and/or real time problems such as

adaptive antenna control, weather prediction, or fusion reactor design. It is not merely

a question of having the answers in seconds instead of minutes— once machines can

perform calculations in real time, whole new applications suddenly become possible.

As an example, consider a computer system which calculates the power spectral

density of intercepted radar emitters. A system which takes an hour to analyze a few

seconds' worth of data may be useful to compile electronic intelligence data back at

fleet headquarters-it produces answers long after the event is over. However, if the

system could perform its analysis in real time it could be used onboard ship or in an

aircraft to recognize hostile missile seekers and dispense chaff or activate jammers—that

is, to respond to events as they happen. Increased speed alone could make this new

application possible.

10
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B. PARALLEL PROCESSORS DEPEND ON COMMUNICATION

When using a number of processors on a single problem, the exchange of data
between processors becomes a critical bottleneck. ]Rcf. 3]

Extensive research has already been conducted in many areas related to parallel

processing, such as task distribution and software development. The research reported

in this paper focused on the architecture of parallel-processing systems, especially with

regard to inter-processor communications.

A system which uses more than one processor to perform a task must provide

communication paths between the processors. There are essentially two approaches to

this requirement:

• provide a path from every processor to every other processor--"exhaustive"
communications

• provide paths between each processor and only some of the other
processors--"limited" communications.

1

1

& 7

\/

\
\

Figure 1.1 Exhaustive Communicatons.

1. Exhaustive Communications

An exhaustive communication architecture (Figure 1.1) provides direct data

exchange without bus contention or waiting. However, as the number of processors

11
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rises, the number of communication paths in an exhaustive architecture becomes

impractically large, leading to high costs. In addition, expansion of the network may

be limited by the inability of the existing processors to accept another communication

port. These difficulties with exhaustive communciation architectures have led many

researchers to consider architectures based on limited communications.

2. Limited Communications

In limited communication architectures, [Ref. 4] identifies two major groups:

dedicated path and shared path structures. Limited architectures employing dedicated

paths enable a processor to exchange data without bus contention or waiting, but only

with a limited number of processors. Figures 1.2 and 1.3 show two examples of a

limited communication architecture employing dedicated paths.

Figure 1.2 Limited Communications-Dedicated Path
Loop.

Parallel-computing systems built around a limited communications-dedicated

path concept can take advantage of the immediate communication between a given

processor and the processors adjacent to it. Yet if a problem requires communication

between non-adjacent processors, the message must be passed along by all the

intermediate processors. Should the message reach a busy node, it may be delayed or

even discarded, forcing a re-transmission. The resultant communication overhead

could tie up the system and severely slow its operation.

12
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Figure 1.3 Limited Communications-Dedicated Path
Regular Network.

Using a shared path (as in Figure 1.4) eliminates the need to relay data from

one processor to another, because an uninterrupted path already exists between any

two processors. For this reason, limited shared-path architectures are more flexible in

the kinds of data flows which can be achieved and in the types of problems which can

be solved than limited dedicated-path architectures. However, because processors must

wait their turn to use the common communication path, system throughput may suffer.

That is, unless the common bus runs at such a high speed that the processors can

barely keep up with the bus. Such a high speed bus design would require a multiplexer

on each chip capable of speeds considerably in excess of the speeds associated with

conventional multiplexers. The Optoelectronic Multiplexer (OM) developed by the

Naval Ocean Systems Center, San Diego, is such a device.

C. THE OPTOELECTRONIC MULTIPLEXER CONCEPT

1. Optical Switching Yields High Speed

The Optoelectronic Multiplexer employs optically-activated junctions to

sequentially link parallel data lines onto a serial bus. [Ref. 5] A laser pulse, fed to the

junction by optical fiber, activates the junction, allowing conduction from the input

line onto the main data transmission line. By using a different length of optical fiber

13
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Figure 1.4 Limited Communications-Shared Path.

for each junction, the laser pulses will arrive at the junctions at different times.

Consequently, the junctions are activated one at a time, which converts the parallel

data waiting on the input lines to serial data pulses travelling along the output

transmission line. The short pulsewidths generated by the laser allow extremely high

pulse repetition frequencies-researchers have tested a prototype laser multiplexer at

speeds as high as 7 Gbps. [Ref. 5]

2. A Suitable Architecture Sought

Current research [Refs. 6 - 10] is especially rich in parallel-processing

architectures based on limited communication dedicated-path concepts, because shared

path communications typically involve delays which could detract from the high

performance otherwise achievable by parallel-processing designs. Prompted by the

development of the high-speed Optoelectronic Multiplexer, which promises an increase

in serial communication speed of at least one and perhaps two orders of magnitude,

this project evaluated -the impact of using a shared bus and serial communication in a

parallel processing computer architecture. Specifically, the following questions were

posed: With current technology, is it feasible to fabricate an Optoelectronic

Multiplexer-based multiple processor chip? What new architectures are made possible

by the OM's high speed? Which architecture makes optimum use of this new

capability?

14
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Four conditions would have to be met in order for a single-chip OM-based

parallel processor to be feasible:

• IC manufacturing technology should be able to fabricate enough transistors on a
single chip to create a multi-processor chip.

• A large chip partitioned into manv processors would produce higher throughput
than the same chip fabricated as a "large uniprocessor.

• Chip throughput (measured in bits per second) would exceed the capacity of
conventional multiplexers, justifying the use of the OM.

• The package of such a multiple processor chip would require so many pins that
package size would be excessive and a multiplexer would be used instead.

The first condition is easily dealt with by a specific example. The Intel 8080

microprocessor contained about 4500 transistors [Ref. 12], while Motorola's MC68020

contains about 200000 [Ref. 13]. Using the technology of the Motorola MC68020, one

could produce a chip with over 40 Intel 8080s. Clearly, manufacturers can already

fabricate a multiple-processor chip. The remaining points require further discussion

and are covered in Chapters II and III.

16
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II. OPTIMUM ARCHITECTURE OF LARGE INTEGRATED CIRCUITS

Chapter I's demonstration that a multiple-processor chip could be fabricated

prompts the following questions:

• Is a multiprocessor chip the best use of IC fabrication technology, or should all

available transistors be assembled into a single processor?

• How large (in terms of transistor count, heat dissipation, and number of
erocessors) would a chip have to be in order to justify the use of the
•ptoelectronic Multiplexer?

A. PARTIONING SILICON FOR MAXIMUM THOUGHPUT
Should designers divide the available silicon among a few large and capable

processors or among many, less capable processors? Which mix yields the highest

throughput?

Consider a system of N processors, each executing the same program and

producing the same number of output data words each second. Applications of such

architectures abound in the field of real time signal processing, which uses regularly

structured algorithms. As N increases, processors share the load, so each may run

more slowly without changing the speed of the system. If we imagine a system

throughput goal of R bits per second (bps), then:

R - NS (eqn2.1)

where R= System throughput (bps)

N = Number of processors

S= Throughput of each processor (bps).

Sreq'd = RN" 1
(eqn 2.2)

where Sreq'd= Speed required of each processor

in order to meet the system goal of R bps.

These equations describe what is required of a processor—but how does a

processor's actual performance vary with N? At issue is the apportionment of the

entire chip's allotment of transistors and heat dissipation ability among N processors.

17
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1. Transistor Constraints

Assuming we can put only so many devices on a chip, then:

t = TN" (eqn 2.3)

where t = complexity of any processor, measured in transistors

N = number of processors

T = Total number of transistors on chip

Generally, a complex processor will be able to perform a given calculation

faster than a simple processor. For example, a microprocessor with an on-board

floating-point unit can handle a multiplication in a few clock cycles, while a smaller

processor has to do tedious successive additions, requiring much more time. But what

is the exact relationship between processor complexity and speed? To answer this we

shall examine the specifications of some existing processors, as listed in Table I and

graphed in Figure 2.1.

TABLE I

SPECIFICATIONS OF SOME ACTUAL PROCESSORS

Group Reference Data Word Time Required for Bit Transistor
(Bits) Multiplication Rate Count

(10"6
sec) (10

6
sec"

1
) (thousand)

CPU's Ref. 14 32 8.30 3.86 60.
1981-82 Ref. 15 16 6.25 2.56 40.

Ref. 16 32 1.80 17.8 450.

Ref. 17 32 5.50 5.82 25.
CPU's Ref. 18 32 4.50 7.11 24.

Ref. 19 32 2.70 11.9 32.1
1982-85 Ref. 20 32 0.75 42.7 65.

Ref. 21 32 0.32 100. 120.
Ref. 22 80 0.18 444. 150.

Ref. 23 16 .090 178. 6.5
FPU's Ref. 24 16 .080 200. 7.5

Ref. 25 16 .060 267. 10.3
Ref. 26 16 .045 356. 10.35
Ref. 27 16 .027 593. 11.5
Ref. 28 16 .079 405. 23.0
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From the experimental relationships between processor speed and complexity

shown in Figure 2.1, we can see that the data in each group are approximated by the

equation:

Sproc = At a
(eqn 2.4)

where Sproc = processor speed (in bps throughput)

t= processor complexity (in number of transistors)

A = empirical constant of proportionality given in Table II

a= empirical constant given in Table II.

TABLE II

EXPERIMENTAL CONSTANTS

Group A a

CPU 81-82
CPU 82-85
FPU

6.69 x
5.16X
4 22 x

10%
10" 2

10
5

0.783
2.07
0.711

Equation 2.4 describes how, in some typical one-processor systems, processor

speed is related to complexity. To apply these findings to a N-processor system of T

transistors, we combine equations 2.3 and 2.4:

Sproc = A(TN _1
)

a (eqn 2.5)

Sproc = ATaN"a

Sproc = K..N

where Sproc = processor speed (in bps throughput)

t= processor complexity (in number of transistors)

N = number of processors

A and a are constants given in Table II.
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A family of "processor curves" may be used to describe the tradeoff between

individual processor speed and the number of processors, constrained by a constant

number of transistors. The tradeoffs are shown in Figure 2.2. For example, consider

the curve labeled "CPU 82-85," which is based on a constant 10
6

transistors per chip.

If these transistors are divided into 10 processors of 10
5

transistors each, Equation 2.4

predicts that each will produce about 116 * 10
6 bps of output. But if the chip is

divided into more (for example 25) processors of 4 x 10
4

transistors each, then these

less complex processors will be capable of only about 17.3 x 10
6 bps each.

When we superimpose these processor curves (Figure 2.2) with a family of

"system" curves, generated by choosing several values of "R" in Equation 2.2, the result

(Figures 2.3 and 2.4) yields a strategy for choosing N. Where the processor curve

(describing what the processor can do) intersects the system curve (describing what

each processor must do ) determines the number of processors (N) into which the chip

should be divided to yield that particular level of system throughput. For example, to

achieve a system throughput of 10
9

bps, Figure 2.3 shows the chip should be divided

into about 12 processors (point A). Yet choosing to partition the silicon into fewer,

larger processors (point B) yields a higher system throughput of 2 x 10
9
bps.

In general, when processor speed is a strong function of complexity, that is

when:

>proc = At a with a > 1 (eqn 2.6)

then Sproc is proportional to N"a (a> 1) while Sreq'd is proportional to N . Thus,

Sproc falls faster than Sreqd as N increases. In this case, the highest performance will

always result from choosing the lowest N possible, in other words N= 1. This strategy

may be constrained for very large values of T—there may not be a processor design

which can effectively use 10
7
transistors, for example. Also, the optimistic relationship

of Equation 2.6 may not hold for large values oft.

On the other hand, when a weak relationship exists between speed and

complexity, as shown in Figure 2.4, the best strategy is to select N as large as possible.

As before, however, there aFe limits to this rule. It may be impractical to divide the

computational task beyond a certain point. For example, a 256-point FFT probably

21
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can not be efficiently shared by more than 128 x 8 = 1024 processors.
1

Also, as N

increases and t decreases, processors will eventually become too simple to function as

microprocessors. For example, excessive reduction in processor complexity could yield

a circuit unable to retain a data word or perform a basic calculation.

2. Power Constraints

Each chip can only dissipate a given amount of heat. The power available to

any individual processor is:

p = PN -l (eqn 2.7)

where p= Power available to any one processor

N = number of processors

P = Total power available to the chip

TABLE III

SPECIFICATIONS OF SOME ACTUAL PROCESSORS

Group Reference Data Word Time Required for Bit Power
(Bits) Multiplication

(llTs sec)
Rate

(10* sec
-1

) (watts)

Ref. 14 32 8.30 3.86 1.50
Ref. 15 16 6.25 2.56 1.40

NMOS Ref. 16 32 1.80 17.8 7.00
CPU's Ref. 17 32 5.50 5.82 0.75

Ref. 18 32 4.50 7.11 2.00
Ref. 19 32 2.70 11.85 2.10

Ref. 23 16 .090 178. 0.125
Ref. 25 16 .060 267. 0.065
Ref. 26 16 .045 356. 0.100

CMOS Ref. 27 16 .027 593. 0.15
FPU's Ref. 28 16 .079 405. 0.195

Ref. 29 32 .100 320. 0.40
Ref. 30 16 .065 246. 0.200
Ref. 31 32 .100 320. 0.500
Ref. 32 16 .065 246. 0.10
Ref. 33 16 .130 123. 0.275

1 There are 256 + 2 = 128 processors per stage and log
2
(256) = 8 stages.
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Examining the relationship between processor speed and power in the light of

data from actual processors, (Table III and Figure 2.5) there in no clear trend evident

in Figure 2.5. In particular, there is a great deal of scatter in the CMOS multiplier

chip data. This may be due to differences in the way researchers report power

dissipation data; for example, some may report only the power consumption of the

computational segment, while others report the power used by the entire chip,

including bus drivers. In spite of these limitations, one interpretation of the

power/throughput data is:

Sproc = Bp b (eqn 2.8)

where Sproc = processor speed (in bps throughput)

p= processor power (in watts)

B and b are empirical constants given in Table IV.

Therefore, combining equations 2.5 and 2.8 as before:

Sproc = B(PN_1
)
b (eqn 2.9)

Sproc = BP bN _b

Sproc = K N

where Sproc = processor speed (in bps throughput)

p= processor power (in watts)

N= number of processors

B and b are empirical constants given in Table IV.

Figure 2.6 shows the relationship described in equation 2.9, namely, the

tradeoff of individual processor speed against the number of processors, constrained

this time by a constant power level, as required by equation 2.7. Since, for the group

of actual processors examined,

Sproc = Bp b with b < 1 (eqn 2.10)

Figure 2.7 shows that the best strategy is to select N as large as possible.
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Figure 2.5 Processor Speed and Power
(Experimental).
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TABLE IV

EXPERIMENTAL CONSTANTS

Group B b

NMOS cpu's 4.27 x 10* 0.693
CMOS fpu's 3.43 x 10

8
0.099

B. MINIMUM CHIP SIZE FOR OM APPLICATION

How large (in terms of transistor count, heat dissipation, and number of

processors) would a chip have to be in order to produce sufficient throughput to justify

the use of the Optoelectronic Multiplexer?

1. Minimum Transistor Count

Assuming the individual processors are of low complexity (like the FPU group

of Figure 2.1) implies that:

Sproc = At a with a < 1 (eqn2.11)

where Sproc = processor speed (in bps throughput)

t= processor complexity (in number of transistors)

A = empirical constant of proportionality given in Table II

a = empirical constant , here < 1.

For this group, the discussion in the previous section shows that the

maximum throughput is achieved by pardoning the available silicon into the largest

number of processors possible, limited by the minimum complexity of the simplest

processor design. Therefore:

N = Tt .

- 1 (eqn2.12)
max nun v ^ J

where T= total number of transistors on chip

t . = complexity of the simplest processor design, measured in transistor

N = number of simple processors possible on chip of T transistors

"While the components of svstolic arrays are less complex than the assumed
simplest processor, this research did not study the performance of such
ICs—accordingly they are not considered here.
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Since each processor produces an output of S bits per second and there
proc

are N processors, the system throughput is:

S = N S (eqn2.13)
sysmax max proc v n '

= N At .

a (eqn2.14)
max min x n '

= [Tt .

_1
]At -

a (eqn2.15)
1 min J mm v n '

= TAt .

a_1 (eqn2.16)
min v » '

Defining S to be the minimum system throughput for which use of the OM
is justified leads to:

S = TAt .

a_1 (eqn2.17)
om mm v n '

T . = S [t .

l"TA"1 (eqn2.18)mm on1 mm ' \ n /

where t . = minimum number of transistors on chip for OM usage to be justifiedmm * <-> j

To estimate the value of T . assume:mm

t . =4 x 10
3
transistors (lower end of FPU group in Table I)mm

A = 4.22x 10
s
(Table II)

a = 0.711 (Table II)

S = 3 x 10
9 bps (Curently the upper range of

conventional multiplexers.) [Refs. 34,35,36,37]
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Therefore:

T . = 92000 transistors
nun

N =13 processors
max r

Thus, since processors with transistor counts > T . are already in existence

[Ref. 21], it seems that an OM-based single chip multiple processor is feasible with

respect to the number of transistors required.

2. Minimum Power Dissipation

What is the minimum heat dissipation of a multi-processor chip which would

yield throughput in the OM range?

N = Pp .

_1
(eqn2.19)

max rimn v n '

where P= Total power dissipation of the chip (watts)

p . = power used by the simplest processor design, measured in watts

N = number of simple processors possible on chip of P watts

S = N S (eqn 2.20)
sysmax max proc v n '

Substituting from Equation 2.8,

S = N Bp .

b (eqn 2.21)
sysmax max r mm v n '

And, substituting for N from Equation 2.19,

S = [Pp •

_1
]Bp .

b (eqn 2.22)
sysmax L r min ' r mxn x n '

S = PBp .

b_1 (eqn 2.23)
sysmax r mm v ^ '
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Defining S to be the minimum system throughput for which use of the OM
om

is justified leads to:

S = PBp .

b_1 (eqn 2.24)
om * win

P . = S [p . ^B" 1 (eqn 2.25)
min omir min J \ i /

where P . = minimum power dissipation of the chip for OM usage to be justified

To estimate the value of P . assume:
min

p . =0.10 watts (lower end of CMOS FPU group in Table III)

B=3.43x 10
8 (Table IV)

b = 0.099 (Table IV)

Therefore:

S =3xl0 9 bps
om r

P . =1.10 watts
min

N =11 processorsmay *

This power level is quite reasonable, and it would seem that from the

standpoint of heat dissipation an OM-based multiple processor chip is feasible.
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III. THE NEED FOR A HIGH-SPEED MULTIPLEXER

Chapter II demonstrated that current technology could produce a chip whose

throughput would exceed the capacity of conventional multiplexer technology. But

why consider serial communications and multiplexers at all? Why not exchange data

with the chip in parallel via pins or leads?

A. PROCESSOR POWER LIMITED BY COMMUNICATION PATH

We have seen that future high-density IC's may be optimally structured as a

bank of many processors, each of moderate capability. However, even if

manufacturers can achieve sufficient circuit density to fabricate a multi-processor chip,

such a device might not be practical due to the large number of leads needed to

communicate with each processor from off-chip. For example, imagine an N-processor

IC designed to compute a 2N-point Fast Fourier Transform (FFT). During the

computation, the IC must read in, then write out, 2N complex output words, or 4N

real words. Assuming a 40 bit word size, and using the same pins for input and

output, we can see this IC would need:

(eqn 3.1)

40 leads

word
x

[ 4N words] = 160N leads

How large a package will we need to handle all these leads? Using a Pin-Grid

Array (PGA) package with pins spaced every 0.1 inch, the area of the package is:

Area = [ 160N leads]

10 leads

25.4 mm

= 1032N mm2
(eqn 3.2)
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For illustrative purposes we can estimate the area of the silicon chip in this

package by assuming the chip size of the processor is approximately the same as that

of the processor recently reported by the Matsushita Corporation of Osaka. [Ref. 28]

Their processor performs a 32 bit floating point multiplication in about 75 nsec and is

32.6 mm2
in area. A chip containing N of these processors would occupy about 32.6N

mm2 of silicon. Thus, the ratio of silicon area to package area in our hypothetical IC

is:

Silicon Area [ 32.6N] (eqn 3.3)
Ratio of = = 3.2 %

Package Area [ 1032N]

As IC fabrication technology improves, this waste of space gets even worse. A

new production technique enabling manufacturers to produce circuits in half the silicon

area previously required would permit us to double "N" without increasing the silicon

area. Yet package area would double, due to increased pinout requirements. Once

some maximum package size is reached, further improvements in circuit density do us

no good--we simply can not communicate with more processors. As one researcher

stated, "the technology has become increasingly constrained by packaging limitations"

[Ref. 38].

Increasing lead density will produce some relief from this communication limit,

but can not be pursued beyond some maximum without excessive fabrication cost. We

are faced, then, with some maximum package size and maximum lead density, implying

an eventual limit on the number of leads a single IC can have.

Given this eventual limit on the number of simultaneous ofT-chip communication

paths, Rent's Rule [Ref. 12:p. 235]

P = 4G - 6 (eqn 3.4)

where P = Number of chip pads or leads

G = Number of gates on the chip

would seem to imply that if the number of paths (P) is limited, then so is the number

of gates (G) and, therefore microprocessor complexity and computational power.

This ultimate limit on non-multiplexed designs is not precisely defined. Neither

maximum package size nor maximum lead density have yet been reached, and industry

experts are wary of predicting when they might be. In addition, the switch to
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multiplexed designs will probably occur over a range of processor densities and

complexities, influenced by market factors (there will be few customers for very large

packages) and manufacturing realities (specialized chip sizes mean more expensive chip

handling equipment) as well as the theoretical factors described above.

For all these reasons, large ICs composed of multiple processors will require too

many pins to use a conventional parallel-transfer scheme with pins or leads. Instead a

serial communications link must be considered, and as shown in Chapter II, the speeds

required will exceed the capacity of conventional multiplexers.
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IV. SYSTEM ARCHITECTURE BASED ON SERIAL COMMUNICATION

Chapters II and III demonstrate that, in the next generation of ICs, a

microprocessor may very well be organized as a bank of smaller processors, all sharing

a relatively few pins through a high-speed multiplexer. But:

• What on-chip data flow architecture should be employed among these
processors?

• How can a serial data stream be distributed among N processors?

• What are the detailed structures of the elements which make up an OM-based
architecture?

A. ON-CHIP DATA FLOW ARCHITECTURE

How should a N-processor chip be organized? The ideal structure will vary with

the application; this discussion considers one specific application-computing FFT's.

The number of processors required to compute a given size FFT will depend on

whether processors are "reused," that is whether a processor bank's outputs are

shuffled and returned to the same processors (reused) or directed to the next bank of

processors (pipelined). Reusing processors allows a given FFT to be computed with

fewer processors, but takes more time. The architectures asssociated with both reuse

and pipeline strategies are discussed in the following sections.

1. Pipeline Architecture

Assuming that the throughput of the system is to be maximized, there will be

no "reuse" of processors. That is:

• each processor performs only a two point FFT "butterfly"

• a new bank of processors performs each stage of the computation in a pipeline
strategy.

The most straightforward architecture for N processors is a N x I column.

How would this grouping affect data flow among the processors? As an example,

when the task is a 16 point FFT, the processors must exchange data as shown in

Figures 4.1 and 4.2. Dividing up the 32 processors shown in Figure 4.2 into 4 x 1

chips forces 80 data words to cross chip boundaries during the computation, as shown

in Figure 4.3.

Re-organizing the four processors on each chip into a 2 x 2 matrix (Figure

4.4) results in only 48 words crossing chip boundaries, thereby improving the system's
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throughput, since ofT-chip communication delay is lessened, and reducing the demands

on the communications network.

The 2x2 structure is more efficient because it is the structure of a four point

FFT. In a sense, the 2><2 structure performs all the computations possible on the

four points it receives, while the 4 x l array, receiving eight points, must hand off its

data only partially "chewed."

There are many such matrices, each corresponding to a particular FFT. For

example, Figure 4.2 suggests that a 32 point processor IC designed for FFT

computation would best be configured as a 8 x 4 matrix. In general, the matrix

dimensions are:

,n-l x n where n= 1,2,3,... (eqn4.1)

2. Reuse Architecture

The number of processors required by a pipeline architecture to compute a

P-point FFT is:

P/2 x iog
2
P (eqn4.2)

This number of processors may prove to be impractical or simply too

expensive, or we may not need the ultimate throughput achievable by the pipeline

architecture, yet still need more throughput than that provided by a uniprocessor.

Also, it may be desirable to adapt an existing pipeline system to compute larger

FFTs-without adding processors. In each of these cases, reusing processors in the

computation enables the designer to tradeoff system throughput for design complexity

and cost. How are data exchanged among processors in a reuse architecture?

The computations shown in Figure 4.2 still must be performed, but now

instead of each block representing an actual processor, it represents a job that some

processor will have to perform. For example, consider a 16-point FFT performed with

two 4-processor ICs. Figure 4.5 shows the data exchange for this example if the

four-processor ICs are organized as 4 x i vectors.

As shown in Table V, even though a chip processes eight points every frame,

it only transmits four points per frame-keeping half its data onboard for further

processing with the half it will receive from the other IC. This assumes that some

on-chip communication path exists to enable processors to exchange data.
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Figure 4.1 Sixteen Point Fast Fourier Transform
IRef. 3 pp. 2019-221.
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Figure 4.2 Sixteen Point Fast Fourier Transform
Pipline Implementation.
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Figure 4.3 Sixteen Point Fast Fourier Transform
Performed by 4 x i Chips.
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Figure 4.4 Sixteen Point Fast Fourier Transform
Periormed by 2 * 2 Chips.
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TABLE V

INTER-PROCFSSOR COMMUNICATIONS
4 X 1 REUSE ARCHITECTURE

Stage
# Receives

Chip A
Transmit' Receives

Chip B
Transmits

1 fo

fi

fs h
f'9 f3

fio

in
ai as a6 a7 fe

f6

fl2 fs

fl4 f7

fi3 as a9 aio an
fis

2 as a9 aio an b* bs b6 b? a* as a6 a7 bs b9 bio bn

3 ba b9 bio bn Cl C3 C5 C7 b« bs b6 b7 C8 CIO C12 C14

4 C8 CIO C12 cw Fo
F2

Fs F*
Fio F6

Fl2
Fi<*

Cl C3 C5 C7 Fi F9 F3 Fn
Fs Fi3 F7 Fis

TABLE VI

INTER-PROCESSOR COMMUNICATIONS
2X2 REUSE ARCHITECTURE

Stage Chip A Chip B
Receives Transmits Receives Transmits

1 fo fs fc fl2 — fi f> fs fl3

2 f2 fio f6 fi<+ bi b3 b9 bn f3 fn f7 fis b4 bi2 b6 bi*

3 b* b6 bi2 bi* Fo Fs F<t F12 bi b3 b9 bn Fi F9 F3 F11
F2 Fio F6 F14 Fs F13 F7 F"i5

As an alternative, consider the same 16-point FFT computed by two

4-processor ICs, this time organized as 2 x 2 matrices, as shown in Figure 4.6 and

Table VI.

Because each IC is only two processors "wide," a single IC can only accept

four data points at a time. This creates an awkward data flow--the source delivers only

half the input vector, waits, then delivers the other half. Each chip must store the

output of its first computation while processing the second half of the input vector.

However, the number of data points exchanged between chips is sharply reduced from

24 for the 4 x l case to 8 for the 2 x 2 case.
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Figure 4.6 Sixteen Point Fast Fourier Transform2x2 Reuse Architecture.
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TABLE VII

INTER-PROCESSOR COMMUNICATIONS
MODIFIED 4 X 1 REUSE ARCHITECTURE

Stase
#

Chip A Chip B
Receives Transmits Receives Transmits

1 fo

ft

fs f2 fio bi b3 b9 bn fi f? fc fn b<f bi2 b6 bi*
fl2 f6 fl4 f5 fl3 f7 flS

2 b« b6 bi2 bi<t Fo Fs F* F12 bi bz b9 bn Fi F9 F3 F11
F2 Fio F6 F14 Fs F13 Fz F15

A third organization of these four processors permits transmission of the

entire data vector (as in the 4 x 1 chip) and minimizes the data exchange (as in the 2

x 2 chip). Its structure is shown in Figure 4.7 and Table VII.

This structure, possible only if processors are reused, maximizes the "width" of

the chip while preserving the communication advantages of a "deep" chip. As

discussed in the previous section, these advantages stem from performing all the

calculations possible on a given data set before releasing is to another chip. By not

allowing "partially chewed" data off the chip, the number of data to be exchanged

between chips at each stage is minimized. In general, an N-processor chip with this

reuse architecture can perform a 2N-point FFT if organized as an N x 1 vector which

performs I+log
2
N stages.

3. Interleaving Data Sets

The efficiency and throughput of any of these reuse architectures can be

improved through interleaving data sets-that is, delivering new data to the processors

to work on while they wait for the communications link to recycle their intermediate

outputs back to their inputs. Consider the progress of a 16-point FFT calculation

performed by eight processors organized as in Figure 4.7. The processor wait time is

cleary evident in Figure 4.8, in which the data sets are not interleaved. In this

example, the throughput is one FFT per (4Tcalc + Txfr).

In Figure 4.9, however, a new data set is delivered to the processors while they

wait for the results of the first phase o[ the calculation to be recirculated. In this

interleaved case, processors are never allowed to be idle. For this example, throughput
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Figure 4.7 Sixteen Point Fast Fourier Transform
Modified 4 x 1 Reuse Architecture.
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Modified 4 x
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is 2 FFTs per 8Tcalc, or 1 per 4TcALC--slightly higher than in the non-interleaved case.

This improvement in throughput was achieved without an increase in bus speed;

alternatively one could reduce bus speed requirements without lowering throughput by

incorporating an interleaved reuse architecture.

B. DATA DISTRIBUTION

Data delivery to the processors can be accomplished several ways:

• processing elements all receive the same data in broadcast fashion

• all processors "know" when it's their turn to receive data and they query the
RBIU for it

M

• data words are "tagged" with their destination--RBIU reads the tag and delivers
data words to their intended processor

• processors contend for bus access with each other

• RBIU delivers data to processors in a preset schedule.

Only this last scheme (using a preset schedule) promises to have sufficient speed

to be acceptable for use with the OM. But is it possible to use an a priori schedule,

and what would it look like?

1. Pipeline Architecture

Returning to the example of a FFT computer built of N-processor ICs, Figure

4.4 shows the data exchanges required by a sixteen point FFT if a pipeline architecture

is used.

The sequence of data on the bus is essentially arbitrary. In choosing the

sequence, it is reasonable to avoid sequences which deliver several data words to the

same BIU one right after the other, in order to minimize the speed required of the BIU.

Figure 4.10 shows one suitable choice.

Due to the regular structure of the FFT, there is a simple algorithm to

calculate the address of any data word's destination, based only on its position in the

data stream, as shown in Table VIII. Because of this, the RBIU's data distribution

logic can be implemented with little more than a binary counter. The transmission

algorithm is equally uncomplicated, as shown in Table IX.

The fact that inter-stage data exchange patterns in the FFT computation are

regular and easily implemented in hardware lends further support to the use of preset

schedules to control BIU data distribution.
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TABLE VIII

PRESET SCHEDU .E FOR DATA DISTRIBUTION
PIPELINE ARCHITECTURE

Word Data Destination Address
Sequence Word RBIU Bufferw

3
W^ Wj w D

3
D

2
D

l
D

o

fo

1 f5 1 1

1 ft 1

1 1 ft 3 1 1 1

1 ft 1

1 1 f7 1 1 1

1 1 fio 1 1

1 1 1 fl5 1 1 1 1

f4 1

1 fl 1

1 ft 2 I 1

1 1 ft 1 1

1 f6 1 1

1 1 ft 1 1

1 1 fl4 1 1 1

1 1 1

D
3

D
2

D
l

D

fll

= Wvv
= w

2

= w ew
3

= w
l

1 1 1

2. Reuse Architecture

Tables X and XI and Figure 4.11 show the data flow structure required to

compute a 16-point FFT with a reuse architecture. Although the task is accomplished

with fewer processors than in Figure 4.10, there are three additional complications:

• additional buffers directlv connect processors which must exchange data in

intermediate stages of the calculation

• an internal path exists between TBIU and RBIU to allow processors which are
not directly connected to exchange data

• BIUs must coordinate the use of internal and external paths.
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TABLE IX

PRESET SCHEDU .E FOR DATA DISTRIBUTION
PIPELINE ARCHITECTURE

Word Data Source Address
Seq aence Word TBIU Buffer

w
3
Wj w

1
wvv

o
S
3

S
2

S
l

s
o

bo
1 b5 1 1

1 b8 1

1 1 bl3 1 1 1

1 b2 I

1 1 b7 1 1 1

1 1 bio 1 1

1 1 1 bl5 1 1 1 1

1 b4 1

1 1 bi 1

1 1 bl2 1 1

1 1 1 b9 1 1

1 1 b6 1 1

1 1 1 b3 1 1

1 1 I bl4 1 1 1

1 1 1 1

S
3

S
2

S
l

S

bll

= W
Q
0W

3

= w
2

= w

1 1 1

C. RECEIVER TASKS

We can view the data distribution circuitry as being separated into a Receiving

Bus Interface Unit (RBIU) and a Transmitting Bus Interface Unit (TBIU). The RBIU

must:

• capture data from the high-speed bus

• convert data from serial to parallel format

• perform error detection/correction

• deliver the data word to its destination processor.

Figure 4.12 shows the architecture developed in this project to accomplish these

tasks. It may be noted that this architecture uses a separately distributed clock signal.

This scheme was used to simplfy the construction and testing of a system prototype,
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TABLE X

PRESET SCHEDULE FOR DATA DISTRIBUTION
REUSE ARCHITECTURE

Word Data Destination Address
Seq jence Word RBIU Bufferw

3
Wvv

2
W

l

Wvv
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D
3
D

2
D

i
D

o

fo

1 fl 1

1 ft 1

1 1 f9 1 1

1 f4 1

1 1 15 1 1

1 1 fl2 1 1

1 1 1 fl3 1 1 1

f2

1 f3 1

1 fio 1

1 1 fll 1 1

1 f6 1

1 1 f7 1 1

1 1 fl4 1 1

1 1 1

D
3

D
2

D
l

D

fl5

= w
= w

3

= w
2

-w,

I 1 1

but once past this phase the clock could be embedded in the data stream itself (as in

Manchester coding), eliminating the need for a separate clock line. Alternatively, if a

fiber optic data link were used, the clock could be sent on the same fiber as the data,

but at a different carrier frequency (color), allowing clock recovery independently of

data reception.

The control signals shown in Figure 4.12 also deserve some discussion. The

RBIU circuitry develops these signals as a function of the bit count, then distributes

the signals depending on which word is currently being received. These signals control

the First-In-First-Out (FIFO) stacks which buffer data between the RBIU and the
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TABLE XI

PRESET SCI T3ULE FOR DATA DISTRIBUTION
REUSE ARCHITECTURE

Word Data Source Add ress
Seq uence Word TBIU Bufferw

3
w^ W, Wvv

o
S
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S
2

S
l

S

bo
1 bl 1

1 b8 1
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1 1 bl2 1 1

1 1 1 bl3 1 1 1

1 b2
1 1 b3 1

1 1 bio 1

1 1 1 bll 1 1

1 1 b6 1

1 1 1 b7 1 1

1 1 1 bl4 1 1

1 1 1 1

S
3

S
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S
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= w,

= w
3

1 1 1

Processing Elements (P/E), as well as between the P/Es and the TBIU. These FIFOs

require signals to cause them to:

• load a new data word (from the RBIU)

• output the next word (to the TBIU)

• advance the stack to bring up the next output word (now that the TBIU has the
current word)

D. TRANSMITTER TASKS

The transmission part of the data distribution circuitry must:

• take the data word from its source processor.

• convert data from parallel to serial format

• add error detection bits

• insert data onto the high-speed bus
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Figure 4.12 Receiving Bus Interface Unit Architecture.
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Figure 4.13 Transmitting Bus Interface Unit Architecture.

Figure 4.13 shows the architecture developed in this project to accomplish these

tasks. The control and timing circuitry needed to interface the output FIFOs with the

TBIU is included as part of the RBIU diagram.

E. CONCLUSIONS AND LIMITATIONS OF THIS RESEARCH

1. Conclusions

The high speed serial communication provided by the Optoelectonic

Multiplexer makes possible a shared-bus parallel processing architecture for problems

like the FFT where the data distribution schedule can be determined a priori. The data

distribution algorithms for the FFT are quite simple and can be realized with little

more than a binary counter.

For the FFT, processors groupings on chip should correspond to the 2
n-1 * n

matrices inherent in the FFT calculation in order to minimize the amount of inter-chip

communications.

Trends in actual processor data suggest that the throughput of the processor

in most cases is proportional to the [size of the processor] , where X< 1 and "size"
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refers to both transistor count and power dissipation. This implies that, for a given

chip size, dividing the chip into increasing numbers of smaller processors raises the

number of processors faster than it lowers the throughput of an individual processor.

Thus, for most types of processors studied, the greatest throughput is achieved by

organizing a large chip as a bank of many simple processors.

Finally, a single-chip OM-based parallel processor is feasible since:

• Manufacturers can fabricate sufficient transsitors on a single chip to construct
many simple processors.

• A chip composed of only about 12 simple processors, easily achieved with current
fabrication technology, could produce enough throughput in a highly structured
problem (like the FFT) to justify the use of the OM's high capacity.

• Constructing such a chip in a conventional package using one pin or lead per bit
would require an excessive package size.

2. Limitations and Recommendations

The architecture described in this report was designed with only the FFT in

mind. It may not be adaptable to less structured calculations or to systems which

must perform a wide variety of calculations.

Multiple-processor chip performance was predicted based on a limited

sampling of current processor data. Further research, using a comprehensive study of

actual processor performance, is needed to augment the simple model developed here.

The comparison of conventional leaded packages and serially multiplexed

packages considered only the extremes of one pin per bit and one pin per chip.

Additional study of alternatives between these endpoints is needed to determine at

what point the cost (in terms of dollars, chip area, and heat) of the Optoelectronic

Multiplexer is justified by its higher performance.
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